User:Sblais/BPG Asian Papers

From MediaWiki
< User:Sblais

Copied and pasted from the BPG Support Problems page, make sure that there is nothing from the BPG Paper Supports page that was missing.

THIS ENTRY IS A DRAFT

Japanese Papers[edit | edit source]

Traditional handmade papers from Japanese bast fibers (kozo, mitsumata, and gampi) are long-fibered or short-fibered, relatively unidirectional, strong, thin or thick, flexible or stiff, absorbent, white, cream or brown, translucent or opaque, soft or crisp. If the fiber has not been over processed, there is always a characteristic luster to the fiber. The variety of handmade papers from Japan is related to the number of papermakers and the end use. There were thousands of hand papermakers before the machine made papers put them out of business. There are several hundred papermakers today, however, only a handful of paper mills operate using the traditional handmade paper methods. (YN)

Traditional Japanese papers are made from bast fibers which make up the inner white bark of specific, young trees. The bark is stripped from the inner core of the tree after steaming. Most of the outer black bark is removed by scraping. The inner white bark is cooked in an alkali solution to remove most of the non-cellulosic materials, loosen the remaining black bark, and begin to separate the fiber bundles. Traditionally, the cooking alkali was potassium hydroxide which came from wood ashes. This is a very gentle process of fiber preparation. Since approximately 1890 soda ash (sodium carbonate), a stronger alkali and caustic soda (sodium hydroxide), a strong, harsh alkali, have been used to cook the fibers. Slaked lime (calcium hydroxide) has also been used as the alkali, but is now used in only a few places. Caustic soda produces quick results and is often the chemical of choice to be used in combination with bleaches to produce white paper. This paper has a soft, pulpy feel and less luster. Papers made from fiber cooked in caustic soda will initially be quite bright and white, but weak. Color reversion due to the over processing with harsh chemicals is likely. After cooking, the fibers are rinsed well, otherwise residual chemicals can cause discoloration or spotting. The fibers are beaten almost to the point of fiber separation rather than cutting them in order to obtain a long fibered paper. One distinguishing factor between Western and Japanese papermaking is the use by the Japanese of a viscous agent (neri) derived from the Hibiscus root (tororo-aoi). The secretion is not a size or a gum; it merely thickens the water in the pulp vat for a while to suspend the fibers while the sheet is formed. This allows the long fibers to become intertwined and permits multiple dips. This substance can allow the sheets to delaminate during treatment. The secretion is not detectable in the dried sheet. The sheets are couched directly on top of each other, pressed lightly, then individually brushed onto wooden boards to dry. This will often leave an impression of the wood grain. The brush can also leave detectable marks on the sheet. The brushed side will have more tooth and is usually the side pasted in lining treatments. Modern methods now include steam heated dryers which are made of stainless steel or cast iron. Foxing has been noted on one side of some lesser quality papers.

The first papermaking company to produce machine made papers in Japan was founded in 1873. Cotton rag papers were made for the burgeoning publishing industry. Machine made bast fiber papers were not available until sometime after. Problems with foxing and over processing of fibers resulting in color reversion and loss of strength can be associated with some of the early machine made papers. Recently, technology has made it possible to produce machine made Japanese papers which are useful for conservation due to their purity and large size.

Each of the fibers has its own characteristics.

Kozo[edit | edit source]

  • Kozo fibers are generally tough, and tend to be naturally whiter than other fibers. Kozo papers can be very thin and somewhat transparent (used for lacquer filtering) or thick and opaque (used for wood block printing). Scroll and screen mounting in Japan is done mostly with kozo fiber papers (such as usumino, misu, uda and sekishu). (YN)
  • Kozo papers sometimes contain a clay filler which increases opacity, dimensional stability, and smoothness.
  • When moistened for printing (Ukiyo-e) certain kozo papers remain relatively stable in dimension. This is important to ensure exact color registration.
  • Hosho is the traditional wood block printing paper produced from kozo fibers; it is available in various weights and is contains a talc filler which makes the paper very smooth, absorbent, dimensionally stable, and white in tone. The paper mold is dipped several times during sheet formation (Dwan 1989).

Gampi[edit | edit source]

  • Gampi fibers are shorter than kozo and browner, due to the non-cellulosic components. Gampi paper is particulary known for its luster and silkiness. Gampi papers can be thin and transparent, giving the impression of membrane. They also can also be quite thick like the coveted Torinoko paper or “Japanese vellum.” Gampi is quite tough and is used as interleaving for beating gold to make gold leaf. The fibers are so fine, that a special waterproofed silk cloth called a “sha” is used to cover the papermaking screen. This covers the chain and laid lines resulting in woven look for most gampi papers. Gampi was used extensively for mimeograph both in the West and Japan. It was one of the first products exported from Japan to the West. (YN)
  • Gampi fibers are used in thick, opaque, yellowish Japanese vellum papers (torinoko). The thickness is the result of many dippings. Often this characteristic may be identified when the edges are inspected; these layers can be delaminated with a spatula. The main purpose of this paper is for painting because of the smooth and beautiful surface. It comes in different grades based on the purity of the gampi fibers. (YN) Texture is an important characteristic: these papers are calendered or filled to make them smooth. The color of the paper shifts when supplementary kozo or mitsumata fibers are added. “An imitation, made by treating ordinary paper with sulfuric acid, is sometimes called ‘Japon’” (Roberts and Etherington 1982, 143).

Mitsumata[edit | edit source]

  • Mitsumata fibers make a naturally browner paper due to the higher non-cellulosic components in the fiber itself. The fibers are shorter, hence the papers are generally more opaque.
  • Kyokushi (Japanese vellum paper) was developed in 1874 by the Meiji government as a security paper. It was considered excellent for this purpose since alterations were easily detected. This quality makes conservation treatments difficult. It was made “Western-style,” couched between fabric, and looked very much like a Western wove paper. It may or may not be calendered on one or both sides. Its unique color and receptivity led to its use and popularity with nineteenth century European printmakers who knew it as “Japon” (kyokushi) (Dwan 1989).
  • Gasenshi, a thin, very white paper, more commonly called China paper or India paper, is made with a combination of bamboo and mitsumata fibers (see Collé Paper). A rice starch powder (wara) is added as a filler. (AD) The name means “imitation calligraphy paper.” It was also made in China and by the Japanese from an early date in imitation of the Chinese paper. The imitation mold gave prominent regular chain and laid lines with approximately half the spacing of other Japanese papers (1.5 to 3.0 cm).
  • Japan “simili” papers: By the twentieth century European mills produced paper in imitation of these Japanese papers (Dwan 1989).

Inherent Problems[edit | edit source]

As in any industry, the quality of paper manufacture varies greatly. Many Japanese papers are in beautiful condition, but may have discolored with age and/or developed foxing. This can be due to the addition of mechanical wood to the pulp, impure water, iron used in the manufacturing process, alum rosin size, drying on heated metal panels instead of wood boards, etc.

  • Kozo: Soft, layered structure makes kozo, in particular, vulnerable to thinning and grayness from embedded dirt and abrasion (Keyes 1988, 32).
  • Hosho with kozo fibers: Because it is dipped several times during manufacture it can easily delaminate between the layers during aqueous treatment (Dwan 1989). Torinoko and Maniai-shi (gampi fibers) do the same. (YN)
  • Gampi: Strong expansion and contraction characteristics are observed if exposed to fluctuations in relative humidity or aqueous treatments. They will expand and contract more than other papers. “The plate measurements of an impression printed on Japanese paper will often be two to three millimeters smaller in both dimensions as compared with those of the same subject printed on a European paper” (Boston Museum of Fine Arts 1969, 180). Because of their thinness, gampi papers wrinkle and ripple easily and repairs can often be seen. If improperly mounted they can buckle and distort dramatically, therefore, they are not recommended for backing paper. (YN)
  • Traditional presentation in the West: Some Japanese papers are “gossamer-thin” and so were often mounted for protection (Nicholson 1988). (See Collé Paper). One may encounter prints attached to the mat by a thin band of paste around all the edges or laid down with the entire verso of the primary support stuck to mat board with paste or dry mount tissue. The quality of the mat board can pose a serious conservation problem; it may contain lignin, be acidic, brittle, and discolored (Nicholson 1988, 39). Mats constructed in the traditional fashion expose these papers to potential damage when the mat is opened, as they are easily sucked upwards. (CS)
  • Sizing: To meet certain needs, some papers were sized with a mixture of gelatin and alum (doza). In some cases the mixture has caused deterioration of Japanese papers (Inaba and Sugisita 1988).
  • Spotting: Uncleaned black bark left in the paper can cause deterioration in the surrounding area due to lignin, etc. Foxing can occur due to the manufacturing process.

Treatment Observations[edit | edit source]

  • Abraded paper surface: Loose paper fibers, soiled and rolled or pilled. Cut away fiber outcroppings, “tame down” shaggy fiber projections with dilute paste or resize (Keyes 1988, 33). Methyl cellulose also works well. (CS)
  • Options are limited in surface cleaning because the papers are unsized and have a soft surface. Cleaning through another piece of Japanese paper can be helpful. (SRA) Using a thick, flattened piece of kneaded eraser which is forcefully pounced straight down, straight up, again and again is also a possible method. (CS)
  • Local discoloration (e.g., foxing) can sometimes be reduced on the vacuum suction table because the paper fiber network is so open. However, the same mobility of discoloration can cause haloes.
  • Introduction of moisture:
    • Because these papers are unsized, characteristics can be lost during aqueous treatments; however, local treatments can be successful. A. Dwan has had success retaining impression and brush strokes during aqueous treatments to remove stains by using selected alcohols (propanol) to “resist” non-treatment areas. This work is still in the experimental stage.
    • Use of steam is not recommended since it can easily create tenacious translucent stains, apparently by affecting the mucilage used in papermaking (Keyes 1988, 32).
    • Gore-Tex treatments have been very successful. Also, suction table treatments and humidification with blotters.
  • Drying/Flattening: Their thin porous structure makes some Japanese papers dimensionally unstable and prone to wrinkles and other distortions. For stretch drying on a screen and several methods of friction mounting see Tracing Papers).
    • To protect the burnished plate area of a Western print on a Japanese paper, a washed Japanese paper (that has been given a slick surface by drying it against a metal surface) is fitted to the plate area by water-tearing it. The smooth side of this “insert” is placed next to the burnished plate area on the washed and damp Western print; then a sheet of lens tissue and felts for final drying are added (Dwan 1989, 11).
    • Success in drying gampi is obtained by placing it between Gore-Tex (with the smooth sides facing the gampi), sandwiching this between blotters and felts, and placed under a light weight. Brush through Hollytex to ensure contact of the gampi with the Gore-Tex. The smooth surface of the Gore-Tex retains the smooth surface of the gampi, yet allows water to be removed equally from both sides of the sheet. The light weight and light restraint of the Gore-Tex sandwich helps to retain the impression of modern Western prints (Dwan 1989, 10).
    • Gampi can be dried on/or against Mylar or Parafilm sheeting to avoid problems of edge adhesion. In the past, glass has also been used as a smooth surface on which to stretch-dry gampi.
  • Gasenshi is unsized and very absorbent, but weak and easy to abrade in surface cleaning, easy to skin, and easy to lose textures (prominent brush marks from traditional drying process, calendered surface, matte and burnished areas from metal plates used to print Western prints) in aqueous treatments and subsequent drying and flattening (see Japanese Papers) (Dwan 1989).
    • Local treatment on gasenshi papers may cause permanent tide lines because of the white-tone from a filler (wara, a rice straw powder). This filler is very absorbent. It is probably this that moves during aqueous treatment and produces white tide lines by redeposition. Use of amylase enzymes is contraindicated because of the presence of the starch based filler (Dwan 1989).
  • Resizing is appropriate for most traditional Ukiyo-e (Japanese woodblock prints) but not for surimono (a category of privately commissioned prints used for seasonal greetings and announcements on lightly sized or unsized paper) or other unsized sheets (Keyes 1988, 30). “Resizing may be considered when the print is limp and lacking its normal body, when the paper surface has been roughened and fibers are loose, when repair was extensive and the general tension balance needs to be established or when large areas have been treated with enzymes. Good quality gelatin is used in a concentration of 0.5% or less. It is normally applied in a spray, but the manner of application may be adjusted to accommodate the tolerance of the colorants present” (Keyes 1988, 33). The papers, if traditional, were sized with the mixture of gelatin and alum called dosa. Test for protein and resize with a good grade of gelatin. The size may have been applied on one side only. (JM)

Chinese Papers[edit | edit source]

Chinese was developed initially for writing in ink. It is very absorbent and comes in sheets made of single, double, or multiple layers. (YN) The earliest paper was made from hemp and paper mulberry; eventually a wider range of materials was introduced including rice straw, bamboo, various barks, etc. Hundreds of types of paper are mentioned in early Chinese literature. The best, then and now, is made from bast fibers. Traditionally, because of slightly different fiber preparation and addition of stem fibers (bamboo, rice straw), Chinese paper does not have the strength, suppleness, and thinness of Japanese papers from the same plants.

Inherent Problems[edit | edit source]

  • Manufacture: Generally, current standards of papermaking in China are low. Sulfurous acid (H2SO3) is used in pulping liquors, sodium hypochlorite (NaOCl) in bleaching, and the size contains aluminum sulfate. All leave damaging residues which can cause yellowness, fragility, and eventual crumbling. Some mills still produce calligraphy paper (xuan zhi) by traditional methods (Zhou 1988, 19).
  • Presentation: Traditional Chinese paintings were produced on a laminated structure to give “strength and body” to the smooth, fine, thin, light paper used as the support.
Manuscript and early printed scrolls: Mounted in the 1960s and 1970s in the West in the manner of East Asian paintings, although mounting was not a traditional format (scrolls formed part of a library, not a collection of paintings). Lining and rolling was an easy option. Lined, rolled objects inevitably crack or delaminate because of the tension between the lining and the primary support. Type of method of manufacture, diameter of roll and thickness of paper and adhesive are also contributing factors.

Treatment Observations[edit | edit source]

See Japanese Papers for other notes on unlaminated objects.

Near Eastern and Indian Paper[edit | edit source]

There are few historical sources for the manufacture of Near Eastern and Indian papers available to English speaking paper historians. Historically, papermaking came to the West through trade routes from China via the Near East and India, so many of the traditional techniques and fibers used are similar to those used in Western papermaking.

Near Eastern and Indian papers use a great variety of fibers including linen, hemp, bamboo, jute, cotton, other bast and leaf fibers, and sometimes silk. Both Near Eastern and Indian paper often contain quite a number of small, colored inclusions such as hair and colored threads.

Historically, Near Eastern paper is composed of bast fibers from flax. The few technical studies which have been made of Near Eastern paper have found mostly flax and hemp fibers. The flax comes from both rags and raw fibers, including bits of bark. Rags appear to have been the preferred fiber source. The hemp is probably recycled cordage (Snyder 1988, 425–440). “Each fiber type might be used exclusively as a raw material or they might be mixed together” (Bosch and Petherbridge 1981, 28).

The fibers were washed, subjected to alkaline solutions and other treatments to remove impurities and to reduce them to a workable state mechanically or by fermentation (Bosch and Petherbridge 1981, 28). They are beaten to produce the pulp or stock from which the paper is actually made.

The paper is often tinted a light brown or sometimes blue, green, red, or yellow. It is often sized, the most common size being starch or a mixture of chalk and starch. Other sizing materials mentioned in contemporary accounts are gum arabic, gum tragacanth, starch dissolved in the soaking water of old straw, egg white diluted with vitriol, white fish glue dissolved in water, the clarified mucus of fleawort seeds, sweet melon juice, the liquid of cucumber and muskmelon seeds, molasses of seedless grapes, and non-oily rice paste. After sizing, the paper is polished with burnishers made of glass, shell, mother-of-pearl, or stone to make a smooth surface for calligraphy and painting.

There is some evidence that papermaking was practiced in Himalayan India by the sixth century A.D. Manufacture may have been localized because suitable plant sources for papermaking fibers grew mostly in the Himalayas (Losty 1982, 11).

Papermaking was introduced into the Islamic world in the eighth century A.D. (704, 712, 751 are suggested dates) (Bosch and Petherbridge 1981, 26). The Arabs knew of paper via trade before this time. “The new writing material soon gained prestige and popularity and quite rapidly became preferred to papyrus and parchment...” (Bosch and Petherbridge 1981, 26).

Papermaking was practiced in Nepal from at least the twelfth century. Nepalese papers all used the bark of the local daphne as the raw vegetable material (Losty 1982, 11).

From the eleventh to the fifteenth centuries Near Eastern paper was exported to the Byzantine Empire and Europe. In the fifteenth century, however, the tide turned and the Ottoman empire began to import paper from Europe.

From early times, India has also used cotton fabric in various formats (e.g., accordion folded, laminated into boards, and scrolls) as supports for letters and manuscripts. The fabric was coated with a flour paste, dried, and smoothed. “Sometimes cotton was treated so ingeniously that it created the impression of an entirely different material” (Gaur 1979, 27).

Inherent Problems[edit | edit source]

The addition of the coating of starch and burnishing makes Indian and Middle Eastern papers difficult to treat. See Coated Papers.

Treatment Observations[edit | edit source]

  • Often Indian and Middle Eastern papers are laminates or cut-outs of various pieces of paper adhered together with a very fine overlap. The structure should be studied very carefully before treatment.
  • The introduction of moisture in treatment should be approached cautiously. Tidelines are a constant problem and can be very difficult to remove. For the same reason other Asian papers with starch fillers are difficult to treat.
  • Using alcohol locally causes starch size to turn grey which is impossible to remove.

References[edit | edit source]

(See also General References)

Asian Papers[edit | edit source]

Bosch, Gulhar and Guy Petherbridge. "The Materials, Techniques and Structures of Islamic Bookmaking." Islamic Bindings and Bookmaking. Gulhar Bosch, John Carswell and Guy Petherbridge. Chicago: The Oriental Institute, 1981, pp. 23-84.

Gaur, Albertine. Writing Materials of the East. London: The British Library, 1979.

Losty, Jeremiah, P. The Art of the Book in India. London: The British Library, 1982.

Snyder, J.G. "Appendix 10: Study of the Paper of Selected Paintings from the Verer Collection." G.D. Lowry and M.C. Beach. An Annotated and Illustrated Checklist of the Verver Collection. Arthur M. Sackler Gallery, Smithsonian Institution, Washington. Seattle: University of Washington Press, 1988, pp. 425-440.

Zhou, Bao Zhong. "The Preservation of Ancient Chinese Paper." The Conservation of Far Eastern Art, Preprints of the Contributions to the Kyoto Congress, 19-23 September 1988. London: IIC, 1988, pp. 19-21.

Japanese Papers[edit | edit source]

Barrett, Timothy. Nagashizuki: The Japanese Craft of Hand Papermaking. North Hills, PA: Bird and Bull Press, 1979.

Fletcher, Shelley and Judy Walsh. "The Treatment of Three Prints by Whistler on Fine Japanese Tissue." Journal of the American Institute for Conservation 18, No. 2, 1979, pp. 118-127.

Inaba, M. and R. Sugisita. "Permanence of Washi (Japanese Paper). The Conservation of Far Eastern Art: Preprints of Contributions to the Kyoto Congress. London: IIC, 1988.

Keyes, Keiko. "Japanese Print Conservation - An Overview." The Conservation of Far Eastern Art: Preprints of Contributions to the Kyoto Congress. London: IIC, 1988, pp. 30-36.

Keyes, Keiko. "The Use of Friction Mounting as an Aid to Pressing Works on Paper." AIC Book and Paper Group Annual 3, 1984, pp. 101-104.

Nicholson, C. "The Conservation of Three Whistler Prints on Japanese Paper." The Conservation of Far Eastern Art: Preprints of Contributions to the Kyoto Congress. London: IIC, 1988, pp. 39-43.

Smith, C. "The Use of Paper Suction Table in Flattening and Drying Moisture-Reactive Japanese Tissues." AIC Poster Paper Text, 1982.

History of this Page[edit | edit source]

This page was created in April 2025 by Sandrine Blais from the BPG Paper Supports and BPG Support Problems pages.

Book and Paper Group Wiki
Wiki Editor Resources

Contributors' Toolbox · Reference and Bibliography Protocols · Accessing Conservation Literature (AIC) · Help Wanted · Template for New Page

Materials and Tips

Annual Meeting Tips Sessions · Materials, Equipment, and Tools · Adhesives · Adhesive Recipes and Tips · Leather Research · Conservation Supply Sources (AIC) · Gels, Thickeners, and Viscosity Modifiers (ECPN)

Examination, Documentation, and Analysis

Glossary of Terms · Visual Examination · Written Documentation · Documentation of Books · Watermarks · Fiber Identification · Spot Tests · Analytical Techniques (PSG) · Non-destructive Testing and Instrumental Analysis (PMG) · Oddy Tests (R&A) · Microchemical Testing (R&A)

Preservation

Selection for Preservation · Exhibition, Supports, and Transport · Choosing Materials for Storage, Exhibition & Transport (AIC) · Imaging and Digitization · Housings · Matting and Framing · Encapsulation · Collection Care (AIC) · Integrated Pest Management (AIC) · Environmental Guidelines (AIC) · Environmental Monitoring (AIC) · Agents of Deterioration (AIC) · Light (AIC) · Pollutants (AIC) · Books and Paper in Historic Houses

Disaster Recovery

Emergency Preparedness & Response (AIC) · Stabilizing Wet Paper (AIC) · Stabilizing Wet Books (AIC) · Stabilizing Wet Skin and Leather (AIC) · Mold

Conservation History and Ethics

AIC Code of Ethics and Guidelines for Practice · Culturally Sensitive Treatment · Conservation Ethics (AIC) · Sustainable Practices (AIC) · History of Conservation and Conservators (AIC) · History of the BPG Wiki

Book Conservation Topics
Structural Elements of the Book

Endpapers · Endbands · Sewing and Leaf Attachment · Book Boards · Board Attachment · Book Decoration · Fastenings and Furniture

Covering Materials

Animal Skin and Leather · Cloth Bookbinding · Paper Bookbinding · Parchment Bookbinding

Treatment Techniques

Washing of Books · Alkalinization of Books · Leaf Attachment and Sewing Repair · Board Reattachment · Use of Leather in Book Conservation

Bookbinding Traditions

Bookbinding Traditions by Region or Culture · East Asian Book Formats · Ethiopian Bindings · Greek-Style Bindings · Western African Books and Manuscripts

Specialized Formats

Scrapbooks · Atlases, Foldouts, and Guarded Structures · Artists' Books · Caoutchouc Bindings

Circulating Collections

Circulating Collections · Case Binding